Embedded Passives in Memory Modules

January 25, 2005

Bill Gervasi Senior Technologist Netlist, Incorporated bgervasi@netlistinc.com

Netlist

- Manufacturer of very high density memory modules
- Based on JEDEC industry standards
- Propose new industry standards
 - Chairman of
 - DRAM packaging committee
 - Small Modules committee
 - 4 Rank Module Task Group
- Currently in production with embedded resistors
- Also use embedded capacitors for labs, future production use planned

Performance Requirements

Today's DRAM interfaces

- Running at 400, 533, 667, 800MT/s per pin, 72 bits wide
- Command rate ½ of DRAM interface rate
- Next generation (2007)
 - DRAM interfaces to 1600MT/s per pin
 - Controller-hub interfaces at 4.8GHz → 9.6GHz

Why Embedded Passives?

4

Why Embedded Passives?

Saves space for what my customers pay for: DRAMs

Using embedded resistors Improves signal integrity due to ability to place components where needed

 Reduces manufacturing cost – break even at 65 replaced SMT placements

Increases module reliability – eliminates #1 failure mechanism in production

Using SMT resistors

Very Low Profile Memory Module

DDR2 512Mb BGA Comparison

	Monolithic	Stack 1	Stack 2	Stack 3
AAA	12x19	12x19	16x20	12x19.2
BBB	11x13	11x13	15x14	12x13.2
CCC	11x11.5	11x11.5	15x12.5	12x11.7
DDD	10x10.5	10x10.5	14x11.5	12x10.7
EEE	10x11.2	10x11.2	14x12.2	12x11.4
FFF	12x14	12x14	16x15	12x14.2
GGG	11.3x13.8	11.3x13.8	15.3x14.8	12x14.0

All DRAM sizes are different

DDR2 VLP FrameDIMM

NETLIST

Embedded Capacitor Geometries

Probing BGA-based designs

DRAM Load Simulator (DLS)

- BGA substrate with DRAM footprint below
- Top surface has probe points for all signals
- Per-signal internal load matching pF-class capacitors

11

Load Matching 1:2 Register Outputs

- With 18 DRAM sites, hard to balance as 9+9 loads
- .:. Tight layouts often have 10+8 loads

• Embedded 2X strength DLS can balance both sides

Reliability of Embedded Resistors

- Screened polymer thick film, Motorola process
- One value of ink (50 Ω), one screening
- 110 resistors @ 22Ω nominal
- 20 resistors @ 60Ω nominal

Summary of Life Tests

	 Exhibit A: Testing the same resistors through 2 reflows, a bake, then 10 more reflows
Bare Boards	 Exhibit B: Heat soak, thermal cycle, humidity
	 Exhibit C: Testing the same resistors over repeated thermal cycling
	 Exhibit D: 3-axis vibration
Assembled Boards	 Exhibit E: Biased humidity testing
Simulation	 Exhibit F: Impact on system timing at margin
Cintration	 Exhibit G: Tolerance push to failure

Buried Resistor Tolerance Over Thermal Shock

Purpose: Six resistors per board tested at multiple cycle points during heat testing, all 110 resistors tested before and after thermal stress

- 1. Measure resistance
- 2. Reflow @ 220 °C
- 3. Measure
- 4. Reflow @ 220 °C
- 5. Measure
- 6. 55 °C bake for 12 hours
- 7. Measure
- 8. Reflow 10 times @ 220 °C
- 9. Measure

All Boards, All Resistors

Buried Resistor Tolerance Under Thermal Stress

Purpose: Application of heat soak, thermal cycle, and humidity

Heat soak: 150°C Thermal cycle: -10°C to +115°C @ 3°C/minute Humidity: RH 85% at 85°C, module powered to 2.5V

Embedded Resistors: Thermal Shock

Conditions: 500 hours of heat

soaking

500 hours of thermal cycling

Conditions:

500 hours of humidity stress

Conditions:

Buried Resistor Tolerance and Drift & Analyze Probing Accuracy

Purpose: Analyze drift for <u>same</u> resistors over 500 thermal cycles on the same board. Analyze tester tolerance.

Method: Thermal cycle: -10°C to +115°C @ 3°C/minute

Resistor Values Over Cycling

Resistor Sampling Error

21.1	20.6	21.0	21.2	21.0	20.6	21.7	21.5	21.1	20.8	21.2	20.9	21.8
21.2	21.1	21.0	20.9	21.4	20.8	21.7	21.5	20.9	20.9	21.1	21.5	21.6
20.8	20.4	20.7	20.8	20.8	20.6	21.3	21.3	20.9	20.9	20.8	20.7	21.6
20.7	20.3	20.6	20.7	20.6	20.3	21.1	21.2	20.8	20.5	20.7	20.9	21.5

Buried Resistor Vibration Screening

Purpose: Determine impact of mechanical stress on buried resistors due to vibration shock in 3 axes

Method: Tri-axial random vibration system from 0 to $20G_{RMS}$ in 5G increments, 30 minutes at each stage

Vibration Testing

- 30 modules selected from 5 panels
- 118 resistors checked per module
- 3540 resistance measurements taken for errors caused by vibration at each stage
- 17700 total checks
- Zero Failures Detected

Buried Resistor Biased Humidity Test of Assembled Modules

Purpose: Verify module functionality after temperature and humidity stress with applied voltage bias; look for migration of resist material

> Method: 85°C/85% RH 500 Hours

Design Rules for Buried Resistors

25

Summary for Exhibit E Testing

- No failures detected
- No visual evidence of erosion
- No visual evidence of filament growth
- Conclusion: No evidence of problems with voltage biased humidity testing

Buried Resistor Tolerance Timing Impact, Simulation

Purpose: Analyze impact of 20% resistor tolerance

Method: Compare 22 Ω ±20% to JEDEC standard 22 Ω ±5%

Series damping on data and strobe

Timing Comparison

JEDEC:	Netlist:
<u>WRITES</u> :	WRITES:
tDV = 2.24 ns	tDV = 2.24 ns

<u>READS</u> :	<u>READS</u> :
tDV = 2.71 ns	tDV = 2.71 ns

Conclusion: Identical timing within <10ps in critical voltage region

Buried Resistor Tolerance Pushed to Failure, Simulation

Purpose: Determine how far embedded resistor tolerance can drift before system failure occurs

Method: Simulation of DDR2 system environment to slow/slow and fast/fast corners with resistor tolerance beyond design guardband spec of ±20%

30

Summary for Push to Failure Simulation

• Writes:

	-50%		-50% -30%		-10%		Nom		+10%		+30%		+50%	
	1	\downarrow	1	↓	↑	↓	↑	\rightarrow	↑	↓	↑	↓	1	\rightarrow
Δt normalized (ps)	+60	+50	+40	+50	-10	+10	0	0	-10	-10	-40	-30	-70	-40

• Reads:

Δt normalized (ps)	-5	-4	-1	-2	0	-2	0	0	+2	0	+6	+4	+13	+7
-----------------------	----	----	----	----	---	----	---	---	----	---	----	----	-----	----

Summary

- Exhibit A: Reflow (Bare board)
 - 0.5% drift with normal stress, 2.3% extreme stress
- Exhibit B: Soak, cycle, humidity (Bare board)
 - Tolerance acceptable over stresses
- Exhibit C: Value drift (Bare board)
 - No detectable drift over stress, probing accuracy 0.5 Ω
- Exhibit D: Vibration (Bare board)
 - No failures detected
- Exhibit E: Biased humidity (Assembled board)
 - No failures detected
- Exhibit F: System timing (Simulation)
 - Meets JEDEC standard timing
- Exhibit G: Push to failure (Simulation)
 - System timing should be okay at ±30% or better

Current Status

- Production for over a year
- Many tens of thousands of boards shipped
- Zero failures in manufacturing*
- Zero failures in customer base*

Next Steps

- Better simulation models for buried components
- Improve resistor tolerance <10% without trimming
- Replace decoupling caps (90-ish @ 100nF)
 - Two per DRAM: VDD & VREF
 - 10x10mm footprint
 - Using one layer of capacitors for both sides of the board

